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Atomic relaxation around defects in magnetically disordered materials computed
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Lattice and magnetic degrees of freedom are strongly coupled in magnetic materials. We propose a consistent
first-principles framework to explore the joint configurational space. For this, we define atomic spin moments
from the projector augmented-wave formalism of density-functional theory and control them via Lagrangian
constraints. We demonstrate our approach for vacancy formation and migration in collinear paramagnetic bcc
iron by implementing a relaxation scheme based on spin-space averaged forces (SSA relaxation). Based on
these results we discuss the impact of the magnetic state on vacancy formation energies, migration barriers, and
relaxations.
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I. INTRODUCTION

The prediction of materials’ properties from first-principles
requires a description of their chemistry and structure at the
atomic scale. If exposed to real environmental conditions,
substantial deviations from the ideal crystal structure will be
present: Finite temperatures result in entropic excitations of
the electronic, magnetic, and lattice degrees of freedom. In
addition, a large variety of crystal defects further destroys
their periodic symmetry. The presence and mobility of these
defects severely impact the mechanical, chemical, or optical
properties of a material. Therefore, it is crucial to predict
their formation energies and migration barriers, which are
intimately connected to atomic relaxations that occur as a
result of broken chemical bonds. For both environmental
impacts, which are entropic excitations and defect relax-
ations, the key ingredients are atomic forces. Methodologi-
cally, their determination becomes particularly challenging in
magnetic materials since the disorder of magnetic moments—
present at finite temperatures—gives rise to complex cou-
pling effects between structural and magnetic degrees of
freedom.

Density-functional theory (DFT) has been and is expected
to remain the workhorse for these kinds of calculations, as it
offers a good compromise between computational feasibility
and predictive power [1]. More sophisticated electronic struc-
ture methods such as dynamical mean-field theory (DMFT)
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generally do not have easy access to atomic forces. While
analytic forces in DMFT can be computed within linear-
response theory [2] in principle, the extra computational effort
for supercell systems (50–100 correlated atoms ⇒ 150–300
force components) seems prohibitive at present. On the other
hand, more empirical approaches like the embedded atom
methods fail to capture the magnetic degrees of freedom cor-
rectly. Originally designed for ground-state properties, DFT
has experienced tremendous progress in its application to
finite-temperature excitations [3,4] and defects [5] in recent
decades.

In the context of ab initio thermodynamics, the coupling
and mutual interplay of magnetic disorder and vibrational
excitations were studied in several recent publications [6–10].
The spin-space averaging (SSA) technique [6], i.e., the super-
position of magnetically disordered supercells, is one of the
promising approaches to determine paramagnetic phonons.
These activities rely on obtaining the total energy for spin
configurations from standard DFT calculations. This makes
a systematic exploration of the spin-configurational space te-
dious, when the spin configurations of interest involved in the
calculations turn out to be unstable.

The numerical challenges are even larger for the simulation
of defects in magnetically disordered materials, demonstrated
by the fact that only a few works have addressed this topic
so far [11–17]. In the case of extended defects, a couple of
studies to calculate stacking faults in the paramagnetic limit
were reported [15,16]. The disordered local magnetic moment
approximation [18] has been frequently used for the paramag-
netic state [16]. The employed electronic structure methods
have, however, limitations in computing atomic forces. While
atomic relaxations might be less important for stacking faults,
they typically cannot be neglected for point defects, disloca-
tions, or grain boundaries.

Most of the methodological developments that involve
atomic relaxations next to defects in paramagnetic materials
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have been tested for vacancies in Fe. The strong focus on this
system is triggered by the availability of experiments for this
case [19,20]. They indicate that the vacancy activation energy
in bcc Fe, i.e., the sum of its formation energy and migration
energy, strongly depends on the magnetic state. Several DFT
studies [11,21,22] have been able to quantitatively reproduce
the change in activation energy between the ferromagnetic
and paramagnetic states. However, in some of these cases
[21,22] the paramagnetic state was treated with atomic po-
sitions obtained from relaxations in the ferromagnetic state.
In other cases [23,24], the atomic relaxation results from indi-
vidual snapshots of magnetically disordered structures; that
is, the bulk symmetry is destroyed, and the result strongly
depends on a specific local coordination. In a recent work [14]
the lattice relaxations have been successfully included within
the adiabatic approximation. In this case, the averaging was
performed over atomic positions obtained from a dynamic
simulation with changing magnetic configurations. The ap-
proach indirectly contains a convergence of forces but requires
a large number of DFT calculations to achieve this goal.

Within this paper, we outline an alternative, computa-
tionally efficient way of considering atomic relaxations in
magnetically disordered materials. From a physical point of
view, the adiabatic limit is assumed, in which magnetic fluc-
tuations happen on a timescale that is much faster than the
motion of atoms. This allows us to employ the SSA [6]
approach for the atomic motion that has already been suc-
cessfully used to describe the impact of magnetic disorder on
phonons in Fe [6,7]. In this approach, magnetic configurations
are assumed to change so fast that an atom cannot respond to
a single magnetic configuration. Therefore, the atom moves
according to the averaged force over different magnetic con-
figurations instead of the instantaneous force in each magnetic
configuration. In this framework atomic relaxation can be
performed by self-consistently computing spin-state averaged
forces instead of instantaneous forces.

From a methodological point of view an efficient frame-
work is required to combine electronic-structure calculations,
SSA, and atomic relaxations. Most important in this context is
the availability of an approach that allows for a robust compu-
tation of the atomic forces and energies for any given atomic
configuration Ra and spin-state configuration Sa. Here, Ra

denotes the usual atomic coordinates in real space, and Sa de-
notes the atomic spin of each atom. To bring such an approach
to success and devise algorithms for characterizing excitations
in the joint space, one needs not only a suitable definition of
atomic spins but also an implementation that allows for an
efficient and reliable evaluation of the energy E (R{a}, S{a}) as
well as the derivatives with respect to the coordinates, i.e., the
atomic forces. Robustness in the DFT algorithm is paramount:
A single spin-state averaged atomic relaxation may involve
hundreds of (R{a}, S{a}) configurations, but excited spin con-
figurations are notoriously difficult to converge because the
spin-space energy surface can exhibit many local minima and
saddle points at an energy scale that is small compared to
typical self-consistency fluctuations. An unexpected failure in
a single configuration can ruin the entire relaxation run. In this
work, we present such an implementation of spin constraints
and of the complex simulation protocol which results in a
revised understanding of vacancy energetics in Fe.

The remainder of this work is organized as follows. In
Secs. II A–II D, we present our spin-constraint formalism and
compare it to previous ones in Sec. II E. Sections II F and
II G are devoted to the SSA relaxation scheme. Section III
summarizes the computational details before we discuss the
application to vacancy in bcc Fe as an example in Sec. IV.

II. METHODOLOGY

The implementation of spin constraints within DFT goes
back to the seminal work of Dederichs et al. [25], in which
constraining magnetic fields were incorporated into an effec-
tive Hamiltonian. Established DFT codes such as VASP [26,27]
employ this approach by adding a penalty contribution to the
total energy expression [28,29]. Unless careful convergence
tests ensure a vanishing penalty energy, this contribution
makes the comparison of defect energies difficult. The need
for convergence tests makes such calculations demanding
with respect to both human and computer time. We therefore
developed and implemented an alternative approach based on
the projector augmented-wave (PAW) [30] formalism of DFT,
which is outlined in the following.

A. Definition of atomic spins

The total spin moment

Mtot =
∫

d3r M(r) (1)

as obtained from the magnetization density

Mα (r) =
∑
σσ ′

τα
σσ ′

∑
n

fnψ
∗
nσ (r)ψnσ ′ (r) (2)

is a well-defined quantity in spin-polarized DFT. Here, the
index α denotes a Cartesian component of the magnetiza-
tion, τα denote the Pauli spin matrices, ψnσ denotes the σ

component (σ = ↑,↓) of the nth Kohn-Sham two-component
spinor wave function, and fn is the corresponding occupation
number. For readability, we omit the explicit Brillouin zone
k index and the corresponding k-point summation weights
relevant for periodic boundary conditions. The sums over n
shown in the following will implicitly run over k points, too.

In the following, we will restrict our discussion to collinear
spin-density functional theory, where the spinors can be split
into separate wave functions for the spin-up and spin-down
channels and the magnetization reduces to the difference be-
tween them. We note, however, that the generalization to
noncollinear spins is straightforward, as discussed in Sec. II D.
With collinear spins, the magnetization reduces to a scalar
field

M(r) = ρ↑(r) − ρ↓(r), (3)

with the spin-up ρ↑ and spin-down density ρ↓ defined as

ρσ (r) =
∑

n

fnσ |ψnσ (r)|2 σ = ↑,↓, (4)

respectively.
The total spin moment equation (2) is not sufficient to char-

acterize magnetically disordered materials. For sufficiently
localized spins, atomic spin moments can give a viable coarse
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graining of spin-excitation space. There are multiple ways
of attributing a magnetic moment to atoms in the system.
For instance, Bader’s concept [31] of “atoms in molecule”
provides atomic “basins” �a based on the topology of the
electron density, which is used to define an atomic moment
as

Ma =
∫

�a

d3r M(r). (5)

Alternatively, if the wave functions are expanded in atom-
centered orbitals (or projected to such an expansion [32]), the
concept of Mulliken populations [33,34] can be generalized to
atomic spins as

Ma =
∑
μν

( fn↑c∗
n↑μSμνcn↑ν − fn↓c∗

n↓μSμνcn↓ν ), (6)

where ν and μ denote atomic basis functions, c is the cor-
responding expansion coefficients, S is the overlap matrix,
and the sum is restricted to basis functions associated with
atom a for ν (gross spins) or both indices (net spins). Last,
a purely geometric ansatz is to integrate the magnetization
density within a sphere for each atom, i.e.,

Ma =
∫

d3rM(r)	(rcut − |r − ra|), (7)

where ra denotes the position of the nucleus and rcut is the
cutoff radius [35–37]. 	 is the Heaviside step function but
can be replaced by a smooth cutoff function [29].

Each of these definitions has its own advantages and dis-
advantages. The Bader definition [Eq. (5)] has no arbitrary
parameters, but it is intricately linked to the electronic struc-
ture. Introducing spin constraints based on this definition may
modify the atomic basins and lead to a complex interplay
between the spin constraint, atomic basins, and the resulting
spin moment. Mulliken spins [Eq. (6)] depend on the chosen
basis set but have the huge advantage that they are defined in
terms of the atomic orbitals used for the calculation (or the
projection), leading to rather simple ways for incorporating
constraints into a standard DFT implementation. Last, the
spherical definition [Eq. (7)] is easy to implement, but the
atomic spins do not sum up to the total spin moment in gen-
eral. Moreover, an implementation in plane-wave basis sets
requires a smoothing of the cutoff to avoid aliasing effects
[29].

For the purpose of coarse-graining spin-excitation space,
slightly different values of the atomic spin resulting from the
above definitions are not critical. Instead, we will regard the
resulting atomic spin moments as the signature of a specific
spin configuration within the chosen definition. The main
purpose of our work is to use these signatures to control to
some degree the spin configuration. For instance, by locally
minimizing the electronic energy with respect to the atomic
spin moments we will arrive at metastable spin configurations
that are independent of the chosen definition of atomic spins
because the minimization condition sets the associated con-
tributions to the spin-constrained Hamiltonian to zero (see
below). But even when we refrain from minimization in or-
der to prepare unstable or transient spin states, we can still
quantify the bias on the unconstrained Hamiltonian.

Our main motivation for choosing the specific definition
in the following is therefore driven not by physical elegance
but mostly by practical concerns for the implementation. In
return, we obtain a formalism that allows us to enforce our
constraints to high accuracy and, vice versa, to obtain the
derivatives with respect to the atomic spins, i.e., the equiva-
lent to atomic forces in spin configurational space from the
Lagrangian multipliers. Our DFT code SPHInX [38] adopts
the PAW formalism [30]. We therefore choose a definition of
atomic spin linked to the partial-wave projection of each atom,
namely,

Ma =
∑

i j

[
Da,↑

i j − Da,↓
i j

] ∫
d3rφi(r)φ j (r)	(rcut − |r − ra|),

(8)
with the usual one-center density matrix [30] for atom a

Daσ
i j =

∑
n

fnσ 〈ψnσ |pi〉〈p j |ψnσ 〉. (9)

The φi in Eq. (8) denote the all-electron partial waves; pi in
Eq. (9) denote the corresponding PAW projectors. For the
cutoff radius rcut we choose the corresponding PAW-cutoff
radius.

To simplify the notation in the following, we introduce the
partial-wave matrix elements of the cutoff-sphere integral

�i j =
∫

d3r φi(r)φ j (r)	(rcut − |r − ra|). (10)

�i j have the dimension of a (partial) volume. Introducing the
spin sign

χσ =
{+1 for σ = ↑,

−1 for σ = ↓ (11)

allows us to write the atomic moment compactly as

Ma =
∑
i jσ

χσ Daσ
i j �i j . (12)

B. Spin constraints

To constrain the atomic spin moments defined in Eq. (8),
we employ the standard Lagrange formalism [25]; that is, we
search for stationary points of the functional

L = F el[ψ{nσ }, f{nσ }]

−
∑

a

νa(Ma[ψ{nσ }, f{nσ }] − Ma,target ). (13)

Ma,target are the target spins, and νa are the corresponding
Lagrangian parameters. F el denotes the standard electronic
free-energy functional [39,40]

F el[ψ{nσ }, f{nσ }] = E el[ψ{nσ }, f{nσ }] − T S( f{nσ }). (14)

The notation ψ{nσ } and f{nσ } is used to indicate the set of all
wave functions and all occupation numbers entering the calcu-
lation, respectively. E el is the usual DFT electronic energy. For
the sake of readability, we omit explicit orthonormalization
constraints

〈ψnσ |ψn′σ 〉 = δnn′ (15)
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(which require the wave functions to be eigenfunctions of
the Kohn-Sham Hamiltonian ĤKS) and the electron-number
constraint

Nel =
∑
nσ

fnσ . (16)

In the standard (unconstrained) approach, the latter defines
the Fermi energy μ in the Fermi-Dirac expression for the
occupation numbers [39,40]

fnσ = 1

1 + exp[(εnσ − μ)/kBT ]
(17)

from the eigenvalues

εnσ = 〈ψnσ |ĤKS|ψnσ 〉, (18)

in agreement with the electronic entropy

S[ f{nσ }] = −kB

∑
nσ

[ fnσ ln fnσ + (1 − fnσ ) ln(1 − fnσ ) ].

(19)

Other occupation number schemes (with different entropies)
are possible, too. We implicitly require the electronic free-
energy functional to fulfill these constraints, Eqs. (15)
and (16).

To make the spin-constrained functional L stationary, we
require

δL
δ〈ψn| = 0, (20)

∂L
∂ fn

= 0, (21)

∂L
∂νa

= 0. (22)

These equations translate into the constrained-spin Kohn-
Sham equation [from Eq. (20)]

{ĤKS + �H ν}|ψnσ 〉 = εnσ |ψnσ 〉, (23)

with the constraining contribution to the Kohn-Sham Hamil-
tonian implicitly defined by

fnσ�H ν |ψnσ 〉 = −
∑

a

νa
δMa

δ〈ψnσ | , (24)

the usual occupation numbers [Eq. (17)] from Eq. (21) but
with the eigenvalues taken from the spin-constraint Kohn-
Sham equation (23), and, last, the desired spin constraint

Ma = Ma,target (25)

from Eq. (22). The solution of this last equation is discussed
in Sec. II C.

By combining the implicit definition of the constraining
contribution, Eq. (24), with the explicit definition of the
atomic spins in Eqs. (8) and (9), we arrive at

�Hν = −χσ

∑
a

νa

∑
i j

|pi〉�i j〈p j |

= −χσ

∑
i j

|pi〉〈φi|νa 	(rcut − r)|φ j〉〈φ j |. (26)

This has the same formal structure as the one-center PAW
correction to the PAW Hamiltonian [30]. It can therefore be
added as an additional term in the one-center Hamiltonian.
The constraining contribution comes also with a clear in-
terpretation: It adds a uniform magnetic field of strength νa

inside the PAW cutoff radius within the one-center correction
of the PAW Hamiltonian. The second line of Eq. (26) ex-
presses this idea in the usual PAW formalism as a projection
onto the partial-wave expansion (the |pi〉 · · · 〈p j | term) with
the partial-wave matrix element of the field within the cutoff
sphere. The spin-dependent sign χσ plays the role of the ma-
trix element of the unit magnetic field with the spin. The spins
are thus controlled by additional per-atom magnetic fields. At
the same time, the correction inherits the spatial smoothness
of the PAW projectors, avoiding any sharp features near the
cutoff radius.

As the spin constraints incorporate naturally into the PAW
Hamiltonian, they leave the electronic minimization routine
largely unaffected. However, if the total electronic energy
is evaluated from the Harris-Foulkes functional [41–43], the
double-counting term must be augmented by

Edc,ν = −
∑

fnσ 〈ψnσ |�H ν |ψnσ 〉

=
∑

a

νa

∑
σ i j

χσ Daσ
i j �i j

=
∑

a

νaMa. (27)

C. Determining values for the Lagrange multipliers

The key step toward a self-consistent algorithm is the de-
termination of the magnetic fields νa. Unfortunately, there
is no viable explicit expression for νa for a given set of
Ma,target because νa enter the Hamiltonian and thus the eigen-
value equation (23), which modifies the one-center density
matrix Daσ

i j via both the wave functions ψnσ and the cor-
responding eigenvalues εnσ . Instead, for a given density
ρ↑(r), ρ↓(r) and thus for a given standard Kohn-Sham Hamil-
tonian HKS[ρ↑(r), ρ↓(r)], we solve the set of equations (25)
iteratively as explained in the following. For this, after obtain-
ing the wave functions ψ̃ for a given set of atomic magnetic
fields ν̃{a} from standard iterative diagonalization [38], we
rediagonalize the subspace Hamiltonian [44]

Hσ
mm′ = 〈ψ̃mσ |ĤKS + �H ν |ψ̃m′σ 〉 (28)

for a new set of atomic magnetic fields

νa = ν̃a + �νa. (29)

The subspace Hamiltonian can be easily obtained from the
original eigenvalues ε̃mσ as

Hσ
mm′ = ε̃mσ δmm′ +

∑
a

−χσ�νa�
a
mm′σ , (30)

with the per-atom PAW partial volume subspace matrix [45]

�a
mm′σ =

∑
i, j @a

〈ψ̃mσ |pi〉�i j〈p j |ψ̃m′σ 〉. (31)

We then obtain the corresponding unitary transformation U σ
mn

consisting of the subspace eigenvectors as columns. From
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these and the new occupation numbers fnσ obtained from
the subspace Hamiltonian eigenvalues according to Eq. (17)
and enforcing particle-number conservation by an appropri-
ate value of the Fermi energy μ, we compute new magnetic
moments

Ma(�ν{a}) =
∑
nσ

χσ fnσ

∑
mm′

(
U σ

mn

)∗
�a

mm′σU σ
m′n. (32)

These values will, in general, disagree with the target values.
To find the set of optimal correction fields �νa that minimize
the deviation in the least-squares sense, we set up the mini-
mization problem

D(�ν{a}) = 1

2

∑
a

[Ma(�ν{a}) − Ma,target]2, (33)

with the gradient

ga(�ν{a}) = ∂D
∂�νa

= Ma(�νa) − Ma,target. (34)

This minimization problem can be solved iteratively with a
conjugate-gradient scheme to a desired accuracy, typically

1

Na

∑
a

|Ma − Ma,target|2 � 10−16. (35)

We find a quick convergence for our systems, within a few
tens of steps in the beginning of the self-consistent iterations
and even fewer toward the end. This is not too surprising: We
expect a priori the change in each atom’s magnetic moment
to be dominated by the change in the on-site magnetic field
(weak interatomic coupling). Moreover, the on-site suscepti-
bility ∂2Ma/∂ν2

a should be of the same order of magnitude
at each constrained site. This leads to a diagonally dominant,
well-conditioned minimization problem.

To summarize the algorithm for the spin constraints, the
following steps are performed:

(1) For a given density {ρ↑
in, ρ

↓
in}(i) in step i and a given set

of ν
(i)
{a}, set up the constrained-spin Hamiltonian equations (23)

and (27).
(2) Solve the spin-constrained Kohn-Sham equation (23)

by iterative diagonalization, yielding eigenfunctions ψ̃ (i)
nσ and

eigenvalues.
(3) Within the subspace formed by these eigenfunctions,

solve the minimization problem (33) by a conjugate-gradient
algorithm on �νa.

(4) For the resulting �ν (i)
a , rotate the wave functions into

eigenfunctions

ψ (i)
nσ =

∑
m

ψ̃ (i)
mσU σ

mn (36)

and update the initial atomic magnetic field for the next step

ν (i+1)
a = ν (i)

a + �ν (i)
a . (37)

(5) Obtain the output density

ρ
σ,(i)
out (r) =

∑
n

fnσ |ψnσ (r)|2 (38)

from the updated wave functions and occupation numbers.
(6) Obtain a new input density (ρ↑

in, ρ
↓
in )(i+1) by a standard

density-mixing scheme.

(7) Check for convergence in density and total energy;
otherwise, return to step 1.

By making a full search for the atomic magnetic field in
step 3 for each density, we ensure that the output density de-
pends only on the input density and not on the initial magnetic
fields ν

(i)
{a}. This is essential for maintaining the convergence-

accelerating effect of advanced mixing schemes such as direct
inversion in the iterative subspace, which rely on a one-to-one
mapping of input and output density and no “hidden” param-
eters. This approach can be seen as being in full analogy to
the search for the Fermi energy μ, even though the algorithm
for determining the atomic magnetic fields is conceptually and
computationally more involved.

D. Generalization to noncollinear spin

We would like to briefly comment on the generalization
to noncollinear spins. It has not yet been implemented here
but does not require dramatic changes to the structure of the
equations or the algorithm. We present these thoughts here
to simplify and encourage the implementation of PAW-based
spin constraints in other codes. In the noncollinear case, the
electron spin is no longer a good quantum number, and the
electronic states become two-component spinors. The wave
functions therefore lose their explicit spin index ψnσ (r) →
ψn(r, σ ), while the spin-dependent on-site matrices become
matrices also in spin space, e.g., Daσ

i j → Daσσ ′
i j . The magne-

tization and local magnetic field become three-dimensional
vectors; for each component the spin sign χσ must be replaced
by the corresponding Pauli matrix.

For the eigenvalues and subspace Hamiltonians discussed
in Sec. II C, a similar transformation occurs. The explicit spin
index is removed, εnσ → εn, Hσ

mm′ → Hmm′ . The subspace
partial volume matrix [Eq. (31)] becomes a matrix in spin
space �a

mm′σ → �a
mm′σσ ′ , but it will be advantageous to store

it combined with the Pauli matrices Pα
σσ ′ , i.e., the transformed

entity

χσ�a
mm′σ → �a

mm′α =
∑
σσ ′

Pα
σσ ′�

a
mm′σσ ′ .

E. Comparison to previous approaches

The most commonly employed alternative to our collinear
spin constraints within the PAW formalism is the constrained
DFT formalism for noncollinear magnetism by Ma and Du-
darev [29]. This formalism uses noncollinear spins and aims at
constraining the direction (but not the magnitude) of magnetic
moments. It therefore can be used to set up a collinear spin
configuration, too. By carefully comparing the working equa-
tions, we see that the converged result of the Ma and Dudarev
approach corresponds to a constraint solution that is fully
consistent with our approach. However, the actual moments
from the Ma-Dudarev approach do not exactly correspond to
the prescribed targets. This can be most easily seen from the
structure of their constraining magnetic field (see Eq. (7) in
Ref. [29], adapted in part to our notation)

ba(r) = −λ

(
Ma

|Ma| − ea

)
F a(r − ra), (39)
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where F a is their equivalent of our cutoff sphere for atom
a, ea is the intended direction of the magnetic moment, and
λ is a tunable input parameter a bit misleadingly denoted as
the “Lagrange parameter.” If the magnetic moment pointed
exactly in the desired direction, the constraining field would
vanish. In general, this is not the case, and a small deviation is
needed to produce the field. In our formalism, we would arrive
at exactly the same field

νa = −λa

(
Ma

|Ma| − ea

)
(40)

for constraining the moments at their actual, off-target val-
ues Ma 
= |Ma|ea. In practice, the Ma-Dudarev approach as
implemented can be seen as biasing the direction of the mag-
netic moment toward a desired target direction with a bias
strength proportional to λ. Alternatively, it may be seen as a
constrained DFT formalism that does not allow direct con-
trol over the direction. To arrive at a specific moment, one
would have to set the target direction slightly away. This was
recognized by the original authors, and they showed that the
deviation can be made arbitrarily small by increasing the λ

parameter. However, this comes at the expense of stability
in the convergence properties because small fluctuations in
direction can then introduce huge fields. Our approach does
not have this uncertainty, but we pay for this by having to
explicitly search for the desired constraining field strengths
νa in each step of the self-consistent iteration. In terms of
stability, however, this makes a huge difference: Our exact
constraint formalism projects out the spin degrees of freedom
from the outer loop and treats them entirely in the (compara-
tively cheap) inner loop to search for the constraining fields,
while the Ma-Dudarev approach hardens the spin-directional
degrees of freedom within the outer loop. To arrive at a well-
conditioned self-consistent problem, the latter approach must
be carefully balanced, and one must compromise between
numerical stability and the accuracy of the final result.

More recently, Cuadrado et al. introduced a fully La-
grangian approach with per-atom Lagrangian multipliers to
constrain the direction of magnetization in noncollinear rel-
ativistic DFT [34] in an atomic-orbital based code (SIESTA).
In their implementation, they use the Mulliken population
based definition of atomic spins. In contrast to our procedures,
however, the Lagrangian multipliers are optimized in an outer
loop, while the inner loop involves the self-consistency iter-
ations at fixed Lagrangian multipliers. We estimate that the
optimization algorithms are interchangeable, while a suitable
definition of atomic spins is (as explained above) mostly
driven by practical considerations for the specific basis set
used. Direct comparison of the two implementations is beyond
the scope of the present paper.

F. Vacancies in paramagnetic materials

In order to consider a magnetically fully disordered ma-
terial, i.e., the paramagnetic limit, the spin constraints are
applied for a random distribution of magnetic moments that
sum up to a total magnetic moment of zero. To achieve an
efficient sampling of spin configurational space that mimics
true random orientations in a limited supercell, we employ
special quasirandom structures (SQSs) [46,47] for an equal

number of collinear [48] spin-up and spin-down atoms. The
use of collinear SQSs to represent magnetic disorder is well
established: Gyorffy et al. [48] showed that the local mo-
ments can be assumed to be collinear by assuming complete
disorder between local moments and neglecting the spin-orbit
coupling. The SQS approach has been extended for magnetic
disorder [47,49] and has been successfully employed in nu-
merous previous works [6,47,49,50].

Generating a vacancy in such a bulk SQS is connected
to a specific magnetic configuration for the adjacent atoms
that cannot represent the full disorder. Therefore, a superpo-
sition of different magnetic structures in the vicinity of the
vacancy needs to be considered. For this purpose, one can
average over different SQSs having the vacancy always at
the same position, or one can stick to the same SQS and
remove the atom at all structurally equivalent positions. The
latter approach ensures the completeness of the set of local
spin structures and therefore the translational symmetry for
a given supercell, similar to the spin-wave method [11,21]. In
addition, previous studies [50] confirm that different magnetic
SQSs with different pair correlation functions yield similar
energies and equilibrium volumes in bcc Fe. Hence, we do
not expect a significant dependence of vacancy energies on the
choice of SQS. Further, forces on atoms are symmetrized in
each structure using the point group symmetries of the crystal
structure.

When a vacancy is created by removing an atom in the bulk
SQS, a residual moment arises which is equal in magnitude
and opposite in direction to the spin of the removed atom.
Such a residual moment can be attributed as the moment of
the vacancy. However, within our formalism, since the average
over many magnetic configurations with either positive or
negative residual spins is considered, the vacancy moment is
zero.

G. Simulation protocol

The DFT calculations are performed for each vacancy con-
figuration in the given SQS using the electronic-structure code
SPHInX [38]. This allows us to benefit from the method for
spin constraints outlined in Sec. II B using the algorithm given
in Sec. II C. After completing the electronic minimization, the
Hellmann-Feynman forces are spin-space averaged following
the SSA scheme [6] originally developed for paramagnetic
phonons. The SSA forces are defined as [6]

F i
SSA =

∑
K=1,N

pK F i
K , (41)

where F i
K is the Hellmann-Feynman force on the ith atom

in the K th magnetic configuration, N is the total num-
ber of magnetic configurations, and F i

SSA is the spin-space
averaged force on the ith atom. pK denotes the Boltz-
mann weight for the K th magnetic configuration, given as
pK = exp[−EBO

K /kBT ]/Z , where EBO
K is the magnetic Born-

Oppenheimer energy for the K th magnetic configuration, kB is
the Boltzmann constant, and Z is the magnetic partition sum.
In the present work, we are interested in the fully paramag-
netic limit of T → ∞, in which all configurations have the
same weight pK = 1/N .
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These SSA forces are afterwards symmetrized accord-
ing to the point group symmetry of the defect structure.
This force symmetrization is an efficient way to ensure
that with each spin configuration also all symmetrically
equivalent configurations are taken into account without ad-
ditional DFT calculations. In general, defects may show a
symmetry-lowering structural instability and symmetrization
will suppress the required relaxation. For the present case
of the vacancy in bcc Fe, there is no indication of such an
instability.

In the next step, the atoms are relaxed according to these
spin averaged forces that properly conserve the symmetry.
This ensures a relaxation in the adiabatic limit of quickly
fluctuating spins and slowly moving atoms. Accordingly, the
atomic positions are updated until a convergence with respect
to the SSA forces is achieved.

For structural relaxations, the “external structure opti-
mizer” (SxExtOpt) [51] is used for the following reasons:
(i) Since the average of forces is performed outside the DFT
code, a structure optimizer independent of the potential energy
surface calculation is required. (ii) SxExtOpt shows a very fast
convergence to the structure of lowest energy as it models the
Hessian based on internal coordinates and parametrizes it on
the fly. The fast convergence is important because the aver-
aging over different spin configurations makes the calculation
significantly more expensive than a standard DFT calculation.

Using the new positions obtained from SxExtOpt as input
for the next ionic step, DFT calculations are again performed
on each magnetic structure. These steps are repeated until
the forces converge with desired accuracy. Henceforth, such
a relaxation scheme will be referred to as “SSA relaxation.”
On achieving convergence, the energies of all structures are
averaged and combined to obtain the vacancy formation en-
ergy [5]

E f = Evac
N−1 −

(
N − 1

N

)
Ebulk

N (42)

and the migration energy

Em = E trans
N−1 − Evac

N−1. (43)

Here, Evac
N−1, Ebulk

N , E trans
N−1 are the energies of a vacancy su-

percell, a bulk system, and a supercell in the transition state,
respectively. The migration energies are determined using the
activation-relaxation technique [52]. The activation energy Ea

is defined as the sum of the vacancy formation energy E f and
the vacancy migration energy Em.

The algorithm outlined above therefore combines three
tools: The DFT code SPHInX, the structure optimizer Sx-
ExtOpt, and the force averaging SSA (Fig. 1). To develop
and disseminate such a complex simulation protocol, we have
used the PYTHON-based framework pyiron [53]. Like an inte-
grated development environment for programming languages,
pyiron allows one to interactively implement and test sim-
ulation protocols and to upscale them for high-throughput
simulations on large computer clusters. One of the advan-
tages of this framework is that the different software tools
can run interactively; that is, the communication between
them occurs via named pipes on the fly, without terminating
one of the codes before starting the next atomic relaxation

FIG. 1. Schematic representation of the self-consistent simula-
tion protocol for a spin-space averaged relaxation. The DFT code
SPHInX, the structure optimizer SxExtOpt, and the SSA force av-
eraging scheme are orchestrated by the p-based framework pyiron
[53].

step. This yields a substantial improvement of computational
efficiency.

III. COMPUTATIONAL DETAILS

The DFT calculations with the SPHInX package [38]
are performed within the framework of the PAW [30,54]
formalism, using the Perdew-Burke-Ernzerhof flavor of the
generalized gradient approximation [55,56]. A supercell of
54 atoms (3×3×3 cell) is used for the ferromagnetic (FM)
and for the paramagnetic (PM) SQS bulk calculations. An
energy cutoff of 600 eV and a Monkhorst-Pack k-point
mesh of 6×6×6 are used. All calculations are performed
with Fermi-Dirac smearing, with a width of 0.1 eV (elec-
tronic temperature close to the Curie temperature of 1041 K).
We verified that halving the smearing width changed the
vacancy formation energy by less than 2 meV. The con-
vergence criterion for the total energy in the electronic
relaxation loop is 10−5 eV. The convergence criterion for
forces in the ionic relaxation loop is 0.015 eV/Å. The lattice
parameter obtained from an energy-volume optimization is
2.83 Å for both the FM and the SQS structures. To under-
stand the effect of lattice expansion, a set of calculations
is performed for a lattice constant of 2.87 Å in the PM
state. This value was deduced using the relative lattice ex-
pansion coefficient [57] near the Curie temperature from
experiment.

The spin constraints for the PM state (the FM state is
performed without constraints) use an atomic moment of
2.1μB as obtained from a moment-energy optimization at 0 K.
Fluctuations in the magnitudes of magnetic moments due to
temperature effects are therefore neglected. The change in the
magnitude of magnetic moments for the first nearest-neighbor
atoms of the vacancy for each magnetic configuration is taken
into account: A number of spin constrained calculations, each
with a different moment magnitude for the nearest-neighbor
atoms of the vacancy, are carried out, and the ideal magnitude
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of 2.3μB is determined from the moment-energy optimization.
Constraining the nearest neighbors to the bulk value (2.1μB)
instead increases the vacancy formation energy by 0.05 eV
compared to setting them to the optimum value (2.3μB).

The energy associated with constraining the fields to
fixed values can be estimated from the Lagrange multipliers
νa = dF/dMa. From the observation that the energy varies
quadratically near the optimum value, the energy can be ex-
pressed as �F = 1/2(dF/dM )2/S, with the spin stiffness
S = d2F/dM2 = dν/dM. A typical rms for the constrain-
ing field strength is rms(ν) = 30 meV/μB with rather little
variation for different setups. With a spin stiffness of S =
550 meV/μ2

B per atom extracted from bulk calculations, we
estimate the constraints to raise the energy by about 1 meV
per atom. Energy differences will profit from error cancella-
tion if the rms values are the same. Therefore, constraining
all the magnitudes to a fixed value is not a major limita-
tion, while it dramatically improves the robustness of the
calculations.

A total of eight magnetic structures are taken for the SSA
after ensuring that the difference in vacancy formation ener-
gies calculated between six and eight magnetic structures is
less than 20 meV, while the difference in formation energies
calculated with seven and eight structures is less than 5 meV.
For consistent comparisons, the same eight magnetic con-
figurations are considered for different relaxation schemes.
Since the point-group symmetries of the crystal structure are
considered for the symmetrization of forces, the total number
of magnetic snapshots is larger (for example, 8×48 = 384 in
the case of the vacancy state). In the case of systems with very
few symmetries, a larger number of magnetic configurations
will be needed for a sufficient sampling of the paramagnetic
state.

IV. RESULTS AND DISCUSSION

Applying the proposed approach to compute atomic forces
and perform atomic relaxations in the PM state, we now
present the vacancy formation and migration energies in pure
bcc Fe summarized in Table I.

A. Impact of magnetic disorder

First, we discuss the impact of magnetic disorder on the
overall activation energy. To this end, our ab initio values
for the FM state are included as a reference in Table I and
Fig. 2. They are in good agreement with experiments (EFM

a =
3.01 eV, 2.75 eV) [19,59] and previous theoretical results
[21,22]. As highlighted in Fig. 2, the activation energy for
vacancy migration turns out to be systematically reduced in
the PM state. This is in particular the case for the SSA re-
laxation proposed in the present paper (last bar in Fig. 2),
for which the impact of magnetic disorder is about 1 eV.
The strong contribution of the vacancy formation energy to
this reduction has previously been investigated and has been
connected with the well-known kinks at the Curie temperature
in the Arrhenius plots for the diffusion rate in bcc Fe. Here,
we note that the absolute reduction in the vacancy migration
energy Em is almost identical to that of the formation energy
E f (∼0.5 eV, respectively), while the relative change in Em

TABLE I. Ab initio determined energy contributions to the acti-
vation energy Ea for self-diffusion in bcc Fe: The vacancy formation
energy Ef and the migration barrier Em for the nearest-neighbor
jumps. Different relaxation schemes for the PM state are compared.
Unless indicated differently, the calculations have been performed
for the theoretical equilibrium lattice constant a = 2.83 Å.

Ef (eV) Em (eV) Ea (eV)

This work
FM 2.15 0.74 2.89
PM (SSA relaxed) 1.62 0.30 1.92
PM (unrelaxed) 1.94 0.63 2.57
PM (FM relaxed) 1.71 0.50 2.21
PM (individually relaxed) 0.99 0.45 1.44
PM (SSA, a = 2.87 Å) 1.89 0.35 2.24

Experimental values for PM
Matter et al. [58] 1.60
De Schepper et al. [20] 1.79
Iijima et al. [19] 2.61
De Schepper et al. [59] 2.37

Other theoretical values for PM
Gambino and Alling [14] (a = 2.84 Å) 1.61
Ruban and Razumovskiy [11] 1.77

(a = 2.90 Å)
Sandberg et al. [22] 1.54 0.40 1.97
Ding et al. [21] (a = 2.90 Å) 1.98 0.43 2.41

is more than 50% and the magnetic effect is, therefore, much
more pronounced for this contribution. Hence, the impact of
magnetic disorder on the reduction of activation energy is
significant.

We note that the magnetic disorder as provided by the SQS
structure is, indeed, required to properly represent the PM

FIG. 2. Comparison of activation energies, which consist of for-
mation energies (lower parts) and migration energies (upper parts)
for different relaxation schemes. Calculations performed at the
equilibrium lattice constant (yellow and blue bars) and at a high-
temperature lattice constant close to the Curie temperature (gray and
orange bars) are compared. The same eight magnetic configurations
are considered for different relaxation schemes in the PM state.
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state. An ordered magnetic configuration with vanishing total
magnetization as given by the antiferromagnetic state (AFM)
state is not sufficient. We performed vacancy calculations in
the AFM state and obtained a negative vacancy formation en-
ergy. The negative value could be a result of a more favorable
ferromagnetic interaction of the eight nearest-neighbor atoms
around the vacancy, once an atom is removed to create the
vacancy.

B. Effect of relaxation schemes

The novelty of the present calculations is the SSA relax-
ation, i.e., the relaxation of atoms according to SSA forces that
are determined by employing an efficient algorithm for spin
constraints. In the following, we discuss the impact of such
a relaxation scheme and compare it with alternative approx-
imations with respect to the formation energy, the migration
energy, and the structural displacements.

We first focus on the values for equilibrium lattice constant
(a = 2.83 Å, the left in each pair of bars in Fig. 2). In the
unrelaxed case, each magnetic configuration is frozen in the
perfect bcc bulk geometry with an atom in the bulk replaced
by a vacancy. Thus, if the relaxation is completely omitted,
then the vacancy activation energy is 2.57 eV (second bar
in Fig. 2). In this case, a PM average over different spin
configurations is still employed but is evaluated only for the
vacancy energies and not for the forces. Compared to the FM
state, such an approach yields only a reduction of the energy
by 0.32 eV, approximately 1/3 of the full impact of magnetic
disorder (1 eV) in our approach. This indicates already the
importance of relaxations in the PM state.

To properly evaluate the impact of PM fluctuations on
the relaxation energy, we compare the SSA relaxation with
a calculation in which the relaxation in the FM state has
been conserved and the spin-state averaging is thus limited
to a single structure (third bar in Fig. 2). In other words,
each magnetic configuration is frozen in the geometry that
is obtained as a result of relaxations in the FM state. The
vacancy activation energy is, in this case, 2.21 eV. We can
conclude that 3/4 of the full energy reduction (1 eV) is due to
a direct impact of magnetic disorder, whereas the remaining
1/4 can be attributed to a proper treatment of magnetism
for relaxations. This contribution is not equally distributed:
It is only 1/6 for the vacancy formation energy, while the
change in relaxation due to the PM state is responsible for
1/2 of the corrections for the migration energy. We note that
a relaxation in the FM state has often been employed in the
literature [21,22] as an approximation for the energetics in the
PM state.

Alternative algorithms suggested in the literature [23,24]
correspond to a relaxation of the atomic positions for indi-
vidual disordered magnetic structures (fifth row in Table I).
Though the energies are, again, averaged over spin configura-
tions, this relaxation scheme does not decouple the timescales
of atomic and spin motions adiabatically. Instead, it assumes
that any given magnetic configuration is sufficiently long-
lived that the atomic coordinates can adapt to it. In this
formalism, the resulting vacancy energies are obtained by
averaging over the total energies of these relaxed supercells.
Since each calculation corresponds to a full structural mini-

FIG. 3. Displacements of atoms in the nearest-neighbor shell of
the vacancy in the vacancy state (blue bars) and in the transition state
(yellow, green, and orange bars). Three different relaxation schemes
for the PM state of bcc Fe are compared. Colors of atoms shown in
the schematic are linked to their displacements in the bar diagram.

mization, we find that the activation energy value (1.44 eV)
is significantly lower than in previous cases. The large de-
crease in activation energy is mainly caused by the reduced
vacancy formation energy, which is about 0.6 eV lower than
the corresponding energy obtained with the SSA relaxation
scheme. The energy reduction is expected to be particularly
large because employing individual relaxations for a highly
symmetric defect configuration such as a single vacancy state
causes symmetry breaking, leading to a larger relaxation of
atoms into the vacancy. In contrast to this, the configura-
tion obtained from the SSA relaxation is minimized with
respect to the averaged forces over different spin configu-
rations. This means that before an atom can respond to the
forces of a single magnetic state, a new state appears and
modifies these forces. Thus, in the adiabatic limit an atom
“sees” only the averaged force over different magnetic con-
figurations. Since this effective force is a compromise of all
individual forces, the obtained minimum structure does not
represent the minimization of any of them and is thus higher
in energy.

The difference in activation energies underlines the sub-
stantial difference of the timescales for the magnetic and
atomic degrees of freedom, thereby justifying the adiabatic
decoupling between them. Furthermore, the formation energy
(1.62 eV) obtained with our method at the equilibrium lattice
constant (2.83 Å) is in good agreement with that reported by
Gambino and Alling [14] (1.61 eV, lattice constant = 2.84 Å),
where the position averaging was carried out in the adiabatic
limit.

It is important to note that although the vacancy formation
energy is lowest for an average of individual relaxations, the
migration energy is the lowest for the SSA relaxation in the
adiabatic limit, as the relaxations in both the vacancy state and
the transition state affect the migration energy calculation.

The resulting displacements of atoms next to the defect for
the vacancy and the migration state are visualized in Fig. 3.
It displays the displacement of the first-nearest-neighbor
atoms around the vacancy for each relaxation scheme. In the
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low-symmetry transition state, three classes of neighboring
atoms exist: (i) the atoms marked in yellow experience a
net repulsion away from the vacancies since they are closest
to the transition site, (ii) the atom marked in green is the
nearest neighbor of the vacancy opposite to the transition site,
and (iii) the orange-marked atoms experience an attractive
force from two vacancies and simultaneously benefit from the
reduced displacements of the other atoms and are further
shifted toward the vacancy.

It is interesting to note that in both the initial and barrier
configurations, the SSA relaxation values lie between the FM
relaxed scheme and the individual relaxation scheme. The
observation that the paramagnetic (or SSA) relaxations for
vacancy activation are larger than the ones in the FM state
agrees with observations from tracer diffusion experiments by
Iijima et al. [19].

C. Inclusion of volume expansion

The results discussed in the previous section were obtained
for supercells with the T = 0 K equilibrium lattice constant,
2.83 Å. However, at temperatures where the system becomes
paramagnetic a sizable volume expansion occurs. To include
these effects and understand how they change vacancy ener-
getics, we repeated calculations and analysis for an expanded
lattice constant of 2.87 Å for the PM state as obtained using
the experimental relative lattice expansion coefficient [57]
near the Curie temperature.

In Fig. 2 we compare the activation energies for the two
lattice constants. It can be clearly seen that the activation
energies in the case of the expanded lattice constant are
substantially higher than their equilibrium lattice constant
counterparts. This is largely caused by the increased vacancy
formation energy, resulting from a smaller vacancy formation
volume. Applying the lattice expansion to the vacancy calcu-
lations performed with the SSA relaxation yields an activation
energy of 2.24 eV. This value is very similar to the activation
energy obtained in the FM relaxation scheme (2.21 eV). This
similarity should be regarded as mere coincidence; in a proper
treatment the adiabatic decoupling of spin and lattice degrees
of freedom as well as volume expansion need to be taken into
account.

Table I lists the calculated vacancy formation energy,
migration energy, and literature values. Vacancy formation
energy values for bcc Fe obtained from different positron
annihilation experiments [20,58,60] and activation energies
obtained from tracer diffusion experiments [19,59] are in-
cluded. Both experimental and theoretical values show a large
scatter. The vacancy formation energy including volume ex-
pansion and calculated from our method (1.89 eV) is within
the error range of the experimental data reported by De Schep-
per [20] (1.79 ± 0.10 eV). In these experiments a sample
with higher chemical purity compared to previous positron
annihilation experiments was considered. On the other hand,
the activation energy as calculated from our SSA relaxation
(2.24 eV) is lower than the values obtained from the tracer
diffusion experiments in the literature (2.37–2.61 eV).

In the present work we did not consider magnetic short-
range order and lattice vibrations since including them in a
computationally efficient way would require substantial new

developments. Magnetic short-range order effects are known
to be small [19,21]. The impact of lattice vibrations will be
addressed in a future study.

V. CONCLUSIONS

In the present work, we introduced and described the SSA
relaxation scheme. Such a scheme is numerically efficient and
robust and has strong physical implications to study atomic
relaxations induced by crystal defects in PM materials.

To achieve this goal, a numerically efficient approach to
enforce spin constraints that is free of penalty energies had
to be developed. The method utilizes projectors in the PAW
formalism and uses a Lagrangian scheme that avoids penalty
forces. The implementation of this approach allows us to
consider large numbers of spin configurations, even if many
of them are unstable.

Further, to explore the potential energy surfaces in the
joint atomic and spin configurational space with a reason-
able computational effort, an effective simulation protocol had
to developed and implemented. To this end, we have used
the interactive development environment pyiron. Within this
environment, we specifically employed the concept of inter-
actively linking simultaneously running atomistic software
tools. This allowed us to run, interrupt, and subsequently con-
tinue the electronic self-consistency cycle in simultaneously
performed DFT calculations. Each DFT calculation treats an
individual spin-state configuration. The SSA and the update of
positions are performed externally by the pyiron framework.

To benchmark and analyze the SSA relaxation scheme we
applied it to compute formation and migration energies of a
vacancy in PM bcc Fe. We then compared the results of the
SSA approach in the adiabatic spin limit with different ap-
proximative relaxation schemes that are commonly employed
in the literature. Both considered alternatives, relaxing atomic
positions in the FM state and relaxing them independently
for various individual magnetic configurations, yield activa-
tion energies that show substantial differences compared to
the SSA relaxation scheme. This finding clearly underlines
the significance of the adiabatic de-coupling of magnetic and
atomic degrees of freedom at high temperatures. Furthermore,
it is shown that for a comparison between calculated and
experimentally measured energies the impact of thermal ex-
pansion on the lattice constant has to be included.

The spin-constraint method and the SSA relaxation scheme
introduced in this paper pave a numerically efficient way to
study the impact of atomic relaxations on thermodynamic and
kinetic defect properties in magnetically disordered materials.
The proposed approach can be applied to materials science
problems, where forces on magnetic atoms are required and
where the magnetic degrees of freedoms are much faster than
the atomic ones.
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